
cos (~ -- ~) = ~(=2), (2.27) 

and ~ = ~(F~) in (2.26) and (2.27). Multiplying the first equation of (2.26) by cos a2 and 
the second one by sin am and adding them, we obtain with (2.27) taken into account a tran~ 
scendental equation for the determination of a= for different values of z2 and a: 

~(~2) + t~ sin (~ + ~ )  + z2 cos 2= sin (~ - ~2) = o. ( 2 . 28 )  

We note that when calculating a, from (2.10) and a, from (2.28) one should take only those 
values which belong to the sector ZsZ~, Having determined the position of the wave a= from 
the formula (2.28), we find its propagation velocity c2 from a relationship similar to (2.3). 
The equality of (2.24) with ~ = ~ to the first expression of (2.13) serves as the criterion 
for the correctness of the numerical calculations for a2. The problem has been solved. 
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ELASTIC STRESSES NEAR JOINTS OF BOUNDARIES OF CRYSTALLITES 

SUBJECTED TO SELF-DISTORTIONS 

Sh. Kh. Khannanov UDC 539.4 

i. The strength and plasticity of solids depends to a large extent on their superatomic 
structure. For polycrystalline materials, these important structural elements include crys- 
tallites (grains), crystallite boundaries, and joints of crystallite boundaries (JCB). Re- 
cently, a number of investigators established that JCB (or joints of boundaries of fragments) 
can be locations for generation of microcraeks both with active deformation [i, 2] and in the 
creep regime [3, 4]. The concentration of thermoelastic stresses near JCB often causes in- 
formation of microscopic cracks in ceramic materials [5]. Elastic stresses, arising near 
JCB, play an important role in recrystallization processes [4] and superplastic deformation 
[6]. 

The concentration of elastic stresses near JCB could be a result of several factors: 
elastic inhomogeneity (or anisotropy) of the material, high-temperature slipping along crys- 
tallite boundaries and, finally, self-distortion of crystallites. Stresses near sharp elas- 
tic inhomogeneities were examined in [7]. The results in [8] permit estimating the elastic 
stresses related to slipping along intersecting crystallite boundaries. In this work, we ex- 
amine the problem of finding the distribution of elastic stresses near JCB in the third case, 
when the joining r undergo self-distortions. In this case, self-distortions are 
taken to mean any (plastic, thermal, magnetostrictive, etc.) distortions of crystallites of 
a nonelastic nature. It is convenient to calculate the stresses by methods of the continuum 
theory of dislocations and disclinations [9-11]. Internal elastic stresses can be repre- 
sented as a superposition of fields of elastic stresses of distributed dislocations. 

2. Let us examine n wedge-shaped crystallites with planar boundaries OP(m) (m = i, 
2 o.o n), joining along the z axis of a Cartesian coordinate system x, y, z (Fig. I). The z 
axis is perpendicular to the plane of the figure. We shall assume that the cry stallites are 
infinite along the z axis and are subjected to homogeneous self distortion 8ik (m), where the 
index m corresponds to the number of the crystallite. In the general case, the distortions 
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8ik (m) are incompatible and the system of crystallites as a whole will be found in a stressed 
state, independent of z. The self-distortion of the system of crystallites 8ik can be repre- 
sented as a sum 

m 

where [9] 

5(V('~)): [ 6(r--r')dV'. 
v(m) 

Here 6(r) is a delta function; r, radius-vector; v(m), region occupied by the m-th crystal- 
lite. The state of the body with given self-dlstortion corresponds to a dislocation state 
with a tensor dislocation density apZ, defined by the relation [9-11]: 

a ~  ~ e ~ r ~ , ~ ,  ( 2 . 2 )  

where eprk is the unit antisymmetric tensor, and the index following the comma indicates dif- 
ferentiation with respect to the Cartesian coordinate (indices i, 2, 3 correspond to x, y, z). 
Substituting (2.1) into (2.2), we obtain 

O~pl ~ ~ U.'pl 
m 

where anz(m ) is the dislocation density tensor, corresponding in (2.1) to the term :~5~)~(V('O): 
cr )== ~I~'6 r (V('O). Using the rule for differentiating the three-dimensional delta func- 
tion [9] and the equation for the boundary op(m) in the form k(m) is the slope of the straight 

ffi a(m) o(m)~ where 6~(S(m))-- ~ 6(r--r')dSa is a two-dimen- line) y k(m)x, we find p~ -~----epr~p~t ur(S (m)) , 
S(m) 

sional delta function [9]; S(m) is the surface of the boundary OP(m). As is evident from 
(2.2), the dislocation density turns out to be concentrated on the surface of the boundaries 
s(m). In addition, we shall assume that the m-th crystalllte has boundaries s(m)~ S (m'*), 
with m # 1 and boundaries s(n). S(*) for m ffi io The surface S(m) serves as a boundary between 
two contiguous regions v(m-*~, v(m) and, in addition ~,r(~ m-i)) = --6r(S(m)), ~,r(V (m)) : ~r (s(m)) �9 

Taking this into account in the summation of apZ (m), we obtain for ap~ (6(S(m)) -- [ 6(r--r')dS'~ 
\ S(m) ] 

ap~ = ~ A(~'~)~t (S(~)), ( 2 . 3 )  
~Z 

where A(p~)----eprkA~(T)nr(S(m)); nr(S (m)) is the normal to S(m); A~(T)-----~(~T ) --~k(~ -*) is the Jump of the 

self distortions in crossing S(m) from the region V(m-*) into the region V(m). 

3. We shall proceed to calculate the distribution of internal elastic stresses near JCB. 
For simplicity, we shall assume that the crystallltes are elastically isotropic and have iden- 
tical elastic constants. It is convenient to calculate the stresses separately for each pla- 
nar distribution of dislocations in (2.3) A~p~)~(S (m)) in the intrinsic coordinate system x(m), 
y(m), z(m). The coordinates x, y, z and x(m), y[m), z(m) have a cowaon origin, the z(m) axis 
is oriented along the z axis, the x(m) axis lies in the plane op(m), while the y[m) axis is 
normal to op(m), as shown in Fig. 2. In what follows, all quantities in the intrinsic sys- 
tem of coordinates will be denoted by a bar above the quantity. In the intrinsic coordinate 
system, the vector normal to s(m) has components (0, i, O) so that the tensor A(~) A~(m)j = ~ p r h L A [ 3 h l  , ~ r  " 

(S(m)) has the following nonzero components: 

) 
| ~ 1 3  ~ ~ ' 3 2  ~ -  - -  L -~ i J I2  ~ ~ - -  
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Fig. 3 
_(m) 

parallel to the z axis with Burgers vector b = (0, 0, i) and distributed with density--ASxs 
along the surface s(m)o Integrating the known stresses of separate~screw dislocations [i0], 
we obtain for the nonzero stress components 

~3a(m} la A~(,~,) - -  a r c t a n ~ -  uuz = -~"  w3 In  

where ~ is the shear modulus, p = ]/z~-y 2} and Ro is the cutoff radius~ Some of the inte- 

grals, calculated along the complete surface S (m), diverge~ For this reason, it is neces- 
sary to introduce the cutoff radius Ro, which in the problem being examined, can be set equal 
to the average linear size of crystallites in a specific polycrystalline material. In the 
expressions presented, only the leading terms taking into account p<<R0 are retained. 

The elastic fields, related to A~)6(S(m)) , are equivalent to fields created by edge dis- 
locations parallel to the z axis with Burgers vector b = (i, 0, 0), distributed with constant 
density --AS**(m) along the surface s(m). Integrating the known stresses from separate edge 
dislocations [i0], we obtain for the nonzero stress components 

0 ~ ( , , 0 _  ~ aT~(,,,)[ n ,, x , ' x y \  u A-~, . , ) /xy~ - -  - - z a r c t a n ~ -  ~ - ~ - ) ,  -_~m,,) 

~al(m) _ ~v ~(m) [ .~ __ a r c t a n  x__l, . ~ , . .  ~ -  

K) 
where v is Poisson's coefficient. 

The component A(m)8(S (m))~ of the dislocation density tensor gives rise to elastic fields 
that are equivalent to fields created by edge dislocations parallel to the z axis with Bur- 
gers vector b = (0, i, 0), distributed with constant density --A~12 (m) along the surface 
S (m). Integrating the known stresses from isolated dislocations of the type indicated [i0] 
yields the following nonzero elastic stress components 

~ ( m )  2~ (1 - -  v) V]2 + i n  p Xa".{m) ~ A ~ }  __ :/ + In p , = - -  'vVv --2u(l--v) , p- 

The elastic field from the component A~)6(S(m!} of the dislocation density tensor, which 
is equivelant to fields from semiinfinite screw dislocations parallel to the x axis with Bur- 
ger's vector b = (i, 0, 0), distributed with constant density ASs,(m) along the surface s(m), 
has a very simple form. Integrating the stresses from the semiinfinite screw dislocation 
[I0], we obtain for the only nonzero component of the elastic stress tensor 

= --- ~ - ' ~ v 8 1  LY 

The contribution from the component ~ - ~ ) 8 ( S  ('~)) of the dislocation density tensor is de- 
termined by integrating elastic stresses from semiinfinite edge dislocations parallel to the 
x axis with Burgers vector b = (0, i, O) distributed with constant density A83= (m) along the 
surface S(m). The nonzero components of the stress tensor have the form 
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=" = 2 = ( t - ~ )  ~ =  ~ , 7 ) '  = 

Finally, the contribution from the components "A~)6(S (rn)) of the dislocation density ten- 
sor is determined by integrating the elastic stresses from semiinfinite edge dislocations 
parallel to the x axis with Burgers vector b = (0, 0, i) distributed with constant density 
A~s~(m) over the surface s(m). For the nonzero components of the stress tensor, we obtain 

~la(m) ~t A=(m) z y  . x 3av),  xx ---- 2n({--v} Pa3 ( ~ f - - 2 v a r c t a n , ~  

Z13(n't) - -  ~t X 4 - -  1/1 Z y "  -3 U Xy  - -  yX  3 _{_ ~'~ 

o w .-- 2n( f i__v)~( '~  ) ' -- \ x 2 p  2 ' 

[ y~--xl/  :~ ya .n x 2 - y ~  
a 'a(m) ( - - - ~ _  ~) 5-~L(a~ ) | ~ arctan- 7- - -  2 --~ -~ 2 =2 ' ] ,  zz - -  2~ \ x" 

xu = 2n (i--- v) I-.33 ~ i n  o + P / "  

The complete expressions for the stresses oij created by all components of the dislocation 
density tensor A~)6(S(~)) , taking into account the contribution of all surface distributions, 
can be written in the form of a sum 

~ ,  _h i (m)  
Ciij : ~ O i j  , 

h, l  ,m 

a ( m ) a ( m ) ~  h l ( ~  hZ(m) ~ i, jt ua are the components of the stress tensor in the laboratory system of where oij 

coordinates| ais (m) is the coordinate transformation matrix in going from the intrinsic sys- 
=~z(m) sep- tem of coordinates to the laboratory system~ It should be noted that the stresses uij 

arately may not satisfy the equilibrium equations ~cm(m) 0, since only the total stresses ,r.a u i j d  
J 

have physical significance [12]. 

As an application of the results obtained above, we shall analyze the internal stresses 
that can arise near triple JCB during plastic deformation of a polycrystal. We shall examine 
three crystallites joining along the z axis, as shown in Fig. 3 (here, we use the same nota- 
tion as in Fig. I). Let the first upper crystallite undergo plastic flow by slipping along 
the surfaces parallel to the x and y axes (in Fig. 3, the surfaces are shown by straight 
lines), under the action of external stretching stresses o, while the remaining crystallites 
remain in the elastic state (for them, the Shmidt factor is not favorable [4]). If we assume 
that the plastic deformation is homogeneous, then the self- (plastic) distortion of the first 
crystallite has the following nonzero components: ~(i) R(1) vxy = ey= = ?, where y is the magnitude of 
the deformation stretching. In this case, from the preceding equations, it follows that near 
a triple JCB there arise elastic stresses that are equivalent to stresses from a biaxial di- 
pole (with arm Ro) of wedge-shaped disclinations [ii]. Identical normal stretching stresses 
will act in any plane passing throuth the z axis 

~ ( p )  = [~/2~(1  - ~)12~ In (Ro/p). 

The generation of microcracks in such a stress field was examined previously in [13] and the 
condition for generation of microcracks can be written in the form 

? = ?+ = 2 [ 2 n ( l - - v ) r / ~ a l V 2 [ l n  ( 4 R o / a ) ]  -~,  

where F is the surface rupture energy; a is the lattice parameter; and, y+ is the critical 
degree of deformation. 

If we set for estimates [4~(i--v)/Ba]F~.~i [13], then microcracks will he generated after 
the critical deformation 7+N]/211n (4Ro/e)] -I , which decreases with increasing size of crys- 
tallites Ro. The behavior of polycrystallites (flow occurs only in some favorably oriented 
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crystallites) examined above can be observed for o < o4., i.e., when external stresses do not 
exceed the macroscopic yield stress ~. For ~+, the Petch--Hall dependence [4] on the size of 
crystallites Ro of the form a+ = ~o + kR~ I/2 is valid, where ~o, and k are some material con- 
stants. Comparing the dependence for y - og~:and y+, ~+, we can see that the conditions 
y = y+ and o < o+ can be satisfied simultaneously for small crystallite sizes R o. This re- 
sult agrees well with experimental observations [2], in which cracking (stratification) be- 
gins after a structure with very small crystallite sizes Ro begins to fragment during plastic 
deformation. 

The aforementioned concerns materials subjected to active deformation and capable of 
hardening. We shall now examine the case when the polycrystalline material deforms without 
significant hardening (the high-temperature creep regime or superplastic deformation [4, 14]). 
Taking into account the fact that in this case all crystallites deform plastically, it is 
necessary to keep in mind the relative (difference) deformation of the crystallite Ay, which 
is defined as the difference between the plastic deformation of a crystallite and the plastic 
deformation of the surroundings. Assuming a power-law dependence of the rate of deformation 
on stress [4, 14], we shall write for the rate of change dAy/dt an equation of the form 

d AV=y0(q--• (~)P 
d--'/" \ ml ] --Y0 ~ , 

where p is the exponent; yo and ~ are constants; and m, and ma are effective orientational 
factors for the crystallite being examined and its surroundingso The first term on the right 
has the meaning of a rate of plastic deformation of the crystallite taking into account the 
constriction of the environment (i.e., reverse stress • and the second term is the rate 
of plastic deformation of the environment. The difference plastic deformation of the crystal- 
lit, Ay increases, if m, < m2, i.e., if the crystallite has more favorable orientation rela- 
tive to the stretching axis than the environment. However, Ay stabilizes by the constrictive 
action of the surroundings (stresses may). If for estimates, we assume that the crystallite 
is spherically shaped, then, following Eshelby's method [15], we obtain for 

2 (t - -  2v) ( 
9 ( ' f - - ~ '  2~ 

Ev ) , 4 - 
(I -~ v) (t - -  2v) , - ~ - ( l - - 5 v ) ~ t ,  

where E is Young's m o d u l u s .  For t - + c o  Ay-+AVmax ~ ( i l •  c �9 Let Aymax>>?+ , the 
critical deformation for generating microcracks (or pores). Then, right up to the point at 
which Ay attains the critical value y+, the reverse stresses --• can be neglected, and %, 
the ratio of the rate of difference deformation dAy/dt to the rate of deformation of the sur- 
roundings (o/m2)P to the rate of deformation of the surroundings (~/m~p is expressed by the 
equation %= (mz/ml--i)P. For o = const, the magnitude of the overall plastic deformation 
of the specimen (~e assume that it equals the plastic deformation of the surroundings) 
up to the time of failure y_ = y+/% and for y+ = const increases with decreasing %. Large 
values of y_ are possible for large p, if m~/m, > 2, and for small p if i~m2/~1<2. The 
quantity i/p is called the coefficient of rate sensitivity [14] and, in addition, for superplastic 
deformation, large values of both y_ and i/p are characteristic. This agrees with the qualitative 
analysis presented above, if we assume that 1~mJm1<2. Such an assumption, apparently, 
is reasonable, since superplastic deformation is observed at high temperatures, when multiple 
slipping increases and when the spread in the effective orientational factors must be small 
(ratio m2/m, differs little from unity). This is confirmed, in particular, by the absence 
of texture accompanying superplastic deformation [14]. 
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PROBLEM OF ESTIMATING THE CREEP STRENGTH UNDER STEP LOADING 

A. M. Lokoshchenko and S. A. Shesterikov UDC 539.4:539.376 

In many investigations of the work of structures under variable stress under prolonged 
high-temperature action conditions, the main question is the possibility of estimating the 
rupture time from test results under constant stresses. The rule of linear summation of the 
partial times, proposed in [i] to analyze test results under variable temperature, is ordi- 
narily utilized as the simplest and best known hypothesis~ We consider the case when the 
stress o1 in the specimen and the effective temperature tx changes by a jump to 02 and re- 
mains constant for a time ta until rupture at the time t* = t, + ta. We write the sum of the 
partial times in the form 

A = t f f t ;  + t f f t~ .  (1) 

In case the principle of linear summation is satisfied 

A----I. (2) 

Here t** (or t=*) is understood to be the time to fracture for stresses ox (or 02) invariant 
during the testing. Many investigations confirm the rule (2) to some extent, however, sys- 
tematic deviations are observed in a significant quantity of papers, which are outside the 
boundaries of the natural spread. For certain materials a deviation of A from I to one side 
is hence characteristic, independently of the test parameters, while for other materials the 
quantity A is greater or less than i depending on the sign of the difference (o1 -- 02). 

The behavior of steel E1388 at 600~ was investigated in [2] for o1 > 02 and o1 < oa 
for small changes in the stress (Io -- o2"I/o, < 0.06), and the tests exhibited a significant 
one-sided deviation from the law (2): the mean value of A was Ao = 0.72. A model permitting 
the description of the deviation of A from 1 to one side, independently of the sign of the 
difference (o, -- oa), is proposed below. 

The concept of a mechanical equation of state, proposed in [3], is used with a system of 
kinetic equations within the framework of the mechanics of continuous media to describe the 
creep of metals, to determine the parameters characterizing the state under consideration. 
One structural parameter m(t) which is a certain measure of the "spalling" of the material, 
is utilized most frequently to describe the creep strength. A value of m from the range 
0~-~ ~ I ,  is ascribed to each "spalling" state, where ~ = 0 corresponds provisionally to the 
undamaged material, and m = 1 corresponds to the time of rupture t*. 

It is kno~ that the nature of rupture for a number of materials at the identical tem- 
perature can be qualitatively distinct depending on the stress level. At high stresses the 
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